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Abstract. A new formula for an experimental determination of a fundamental quantity
in hyperbolic geometry, namely, Lobachevsky’s π(δ) function is presented. Applications to
cosmology are discussed. Using the above result, we strongly suggest that the sign of the
curvature of the ambient space is negative.
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1. INTRODUCTION

We present a new formula (7) which enables us to experimentally find Lobachevsky’s function
π(δ). This brings us closer to the verification of some speculations on the geometry of physical
space.

Due to the negative curvature of Lobachevsky space, the notion of length is coupled to the
notion of angle via the so-called angle of parallelism π versus the distance δ, π = π(δ). In Euclidean
geometry, angle and length are independent notions. The duality between length and angle in
Lobachevsky geometry is usually expressed as a property of nonexistence of unequal similar triangles
in Lobachevsky geometry or, equivalently, the dependence of the sides of a triangle on the angles.

The significance of the function π(δ) is that this function is a direct (primary) indicator of the
negative curvature of space. Thus, the ability to find π(δ) in terms of experimental data, as we
present it, is extremely important. It is easy to see that if π(δ) = 90◦ (see (3)), then our space is
Euclidean. Thus, an experimental determination of π(δ) is that of the actual curvature of space.

In the present paper, we do not discuss Lobachevsky geometry by itself and refer the reader
to the references. In particular, Anderson [1] provides an overall modern exposition of hyperbolic
geometry at an introductory level. The geometry of geodesics in Lobachevsky space is discussed in
Buseman & Kelly [4], where there is also a proof of Theorem 1. The horospheres in Lobachevsky
space are discussed in Gelfand, Graev, and Vilenkin [6]. Lobachevsky’s original work can be found
in the appendix to Bonola’s book [2], where π(δ) is discussed in detail. A short and rigorous course
on Lobachevsky geometry is given in Canon et al [5].

By Lobachevsky (hyperbolic) space L3 we mean a real three-dimensional, simply connected,
and noncompact space of constant negative curvature equipped with a standard hyperbolic metric.
We adopt for L3 the standard Gaussian curvature K = −1. Sometimes in the literature, K takes
a value K = −k−2, k > 0. In that case, the hyperbolic distance δ in formulas (1) and (2) must be
replaced by δ/k.

2. CALCULATION OF LOBACHEVSKY’S FUNCTION π(δ)

2.1. Separation of Geodesics and Changes in the Length Scale

As is known (see, e.g., Milnor [8]), the geometry of manifolds can be expressed in terms of light
rays propagating within the manifold under the identification of light rays with geodesics. Objects
dual to geodesics in hyperbolic space are horospheres. A horosphere is a surface orthogonal to a
congruence of parallel geodesics and tangent to the boundary at infinity. The internal geometry
on horospheres in Lobachevsky space is Euclidean. These facts can be found in Gelfand, Graev,
and Vilenkin [6] and in Buseman & Kelly [4].
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In order to carry out measurements in Lobachevsky space L3, we have to introduce coordinates.
We choose horospherical coordinates as the most useful for our purpose. First, we take an arbitrary
point o ∈ L3 and call it the origin or the reference point. Next, we choose an arbitrary equivalence
class [γ] of parallel geodesics γ and select a representative γ ∈ [γ] which contains the reference
point o. We call this geodesic γ the reference geodesic γo. The horosphere Ω containing o and
orthogonal to [γ] is called the reference horosphere Ωo. The orthogonal grid of geodesics γ ∈ [γ]
and horospheres Ω forms a system of horospherical coordinates in L3. The horospherical coordinate
frame at a common point p = γ ∩Ω of a geodesic γ and a horosphere Ω is given by three mutually
orthogonal vectors, one of which is tangent to the geodesic γ and the two others are tangent to
the horosphere Ω. In particular, a fixed frame at the origin o is called the reference frame. The
orientation on any geodesic γ ∈ [γ] is chosen in such a way that any point p ∈ γ follows the point
p∞ at the boundary at infinity which defines the class [γ].

The duality between geodesics and horospheres in Lobachevsky space is given by Theorem 1.

Theorem 1 (for the proof, see [4]). If two parallel geodesics γo and γ cut segments lo and l on
two parallel horospheres Ωo and Ω (separated by a distance δ), then the ratio l/lo is given by:

l

lo
= eδ . (1)

The length ratio l/lo in (1) can be represented in a different way, which is convenient for further
discussion, namely, l/lo = (l − lo + lo)/lo = 1 + z, where z > 0 measures the deviation of parallel
geodesics due to the distance δ.

In this notation, equation (1) becomes1:

δ = log(1 + z) (2)

2.2. Angle of Parallelism from Experimental Data

The function π(δ) (the angle of parallelism) was introduced by Lobachevsky by formula (3)
below in his work “Geometric Research on the Theory of Parallels” (see the English translation in
the appendix to Bonola [2]),

tan
π(δ)

2
= exp(−δ). (3)

Equation (3) is not useful for experimental determination of π(δ) since the way of measuring
hyperbolic distances in Lobachevsky space is not known. In order to calculate π(δ), we note that,
if we take the distance δ in (3) to be equal to the separation between the parallel horospheres Ωo

and Ω in (1), then, combining (1) and (3), we obtain:

tan
π(δ(l/lo))

2
=

( l

lo

)

−1

. (4)

Equation (3) expresses the angle of parallelism π(δ) versus the length ratio of two segments lo
and l cut by two parallel geodesics γo and γ on parallel horospheres Ωo and Ω separated by the
distance δ. In other words, we replaced physically nonmeasurable distance δ by the corresponding
ratio l/lo which is physically measurable. This is the crucial step connecting abstract non-Euclidean
geometry to experimental physics.

Next, we must establish a physical standard of length to assign the reference length lo to the
standard. We must also show an operational way to measure the ratio l/lo. At this point, recall that
the General Conference on Weights and Measures in 1983 adopted as a primary length standard, or
reference length, the wavelength λ of the iodine stabilized HeNe laser, λHe−Ne = 632.99139822 nm.
Thus, in physical metrology, a common practice is to use an appropriate wavelength λ of elec-
tromagnetic radiation as the reference length l. We also follow the same metrology based on a
wavelength standard.

1Equation (2) explicitly gives the relative increase in the length scale 1+ z versus the hyperbolic distance δ, due to

the exponential divergence of geodesics. In the Poincaré ball model of Lobachevskian space, the hyperbolic distance

δ is related to the Euclidean distance d by the rule d = tanh δ. In terms of Euclidean distance, equation (2) becomes

d = tanh log(1 + z), which was derived in another way in v. Brzeski & v. Brzeski [3].
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In hyperbolic space, the only practical way to gain information at distances which can be arbi-
trary large is to use electromagnetic radiation. We locate the source at the reference frame o and
choose the source’s own wavelength λo as the reference length lo. Then we consider two parallel
geodesics γo, γ ∈ [γ] separated at the reference frame by the distance lo = λo.

It follows from Theorem 1 (equation (1)) that two parallel geodesics γo and γ separated by λo

along the horosphere Ωo (at the source frame) are separated by λ > λo at the horosphere Ω (at the
observer frame). The spectral shift (λ − λo)/λo = z > 0 is commonly referred as the redshift, and
λ = λo(1 + z). The spectral shift z is routinely measured with great accuracy by spectroscopic
techniques.

In view of (2), the left-hand side of (5) is actually a function of z, which we denote by β(z).
Therefore, we may write

tan
β(z)

2
=

( λ

λo

)

−1

, (5)

β(z) = 2 arctan
( λ

λo

)

−1

= 2arctan
1

1 + z
, (6)

β(z) = 2 arctan
1

1 + z
. (7)

Equation (7) expresses Lobachevsky’s angle of parallelism β(z) in terms of physical experimental
data, namely, the dilation in wavelength z. Geometrical relations leading to (7) are clear from Fig. 1.

Fig. 1. The Poincaré model of Lobachevsky space in the unit ball model. The geodesics γo and
γ are parallel. The horospheres Ωo and Ω are parallel. OA=DB=OC=δ, and OC is the distance
which sets the angle of parallelism. The reference geodesic and the reference horosphere are
shown in a thicker gauge.

As was mentioned in the introduction, the angle of parallelism is a measure of negative curvature.
In particular, if β(z) = 90◦, then the space is Euclidean.2 One can readily see from (7) that
β(z) = 90◦ implies z = 0. This simply means that parallel geodesics do not diverge in Euclidean
space.

However, astronomical observations of distant objects in space consistently show a spectral shift
toward the red part of the spectrum, z > 0. The value z > 0 (see (7)) implies in turn that β(z) < 90◦,
which tells us that space is negatively curved, K < 0. Thus, we present strongly supported reasons
to believe that the three-dimensional space around us is Lobachevsky space.

2Recall that, for an arbitrary k, the right-hand side of (3) is exp(−δ/k). We have K → 0 and tan(π(δ)/2) → 1

as k → ∞.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 14 No. 3 2007



APPLICATION OF LOBACHEVSKY’S FORMULA 369

3. SOME REMARKS

Since the early nineteenth century, when the original formula (3) for π(δ) was discovered by Loba-
chevsky, it remained an abstract mathematical entity. Its physical realization is β(z). We believe
that the possibility of evaluating β(z) by direct experimental data can attract attention to Loba-
chevsky geometry, which seems (at least in some cases) to model physics closely. However, already
Riemann believed that the actual geometry of physical space can be determined by experiment
only; see Riemann [8].

As is well known, three-dimensional Lobachevsky geometry can be realized as the geometry of
the coset space SL(2, C)/SU(2) = L3, where the points of Lobachevsky space L3 are represented by
matrices a ∈ SL(2, C), see Gelfand, Graev, and Vilenkin [6]. All equations of Lobachevsky geometry
can be obtained in that way. Thus, expressing geometrical entities of Lobachevsky geometry via
experimental data, we should also be able to interpret (and name) some group-theoretical entities
and constructions by direct experimental data. This is an interesting possibility.
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