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1. INTRODUCTION

This paper is a continuation of our research presented in [2]. Since
a considerable portion of mathematical and geometrical foundation
is in detail presented in [2], those readers who want to see more
mathematics and non euclidean geometry are encouraged to take a look
at [2]. In our paper [2], using simple computations in non Euclidean
space, we showed that shifts in spectra of electromagnetic radiation
follow from the negative curvature of space (either velocity or
configuration), and that the Hubble distance velocity hypothesis is
not needed to explain experimental data regarding observed redshifts.
It was shown that a Lobachevskian space (space of constant negative
curvature) transforms the wavelength of light accordingly to the
equation ξ = tanh (ln ζ) , where ξ = r

R is the radial separation between
transmitter and receiver in Poincare ball model of Lobachevskian space
normalized to the ball radius R, and ζ = 1 + z is the wavelength ratio
λD
λT

measured at detector D and transmitter T respectively, and z is
the experimentally measured redshift. Also in [2], the extension of a
spatial domain beyond which calculations based on Euclidean physics
are invalid was calculated. Finally, the existence and properties
of Cosmic Microwave Background Radiation (CMBR) were
promptly deduced from Lobachevskian geometry. CMBR, which is
identified with a (homogeneous) space of horospheres in Lobachevskian
space is inherently built into Lobachevskian geometry, and so the
called Big Bang cosmology is entirely not required to explain
its existence and its properties (homogeneity, isotropy). It
is worth noting that our model of Lobachevskian physics agrees
with all already observed experimental data recorded via
the electromagnetic spectrum, it gives a formula for all values
of z (Hubble experimentally found only the “linear” part for small
z), it naturally explains the new findings, e.g., redshift periodicity
[13], and it has only one assumption — the space is a 3D static
Lobachevskian space.

There are however other equally important parameters which
characterize the state of an electromagnetic wave, namely its
polarization and intensity. Those are of the upmost importance.
Almost every branch of science and technology, in one or another
way, depends on our ability to distinguish between intensities
of electromagnetic radiation. The behavior of the intensity of
electromagnetic radiation in Euclidean space is well known and there
is no need to consider it any further here. However, as the geometry
starts to deviate from Euclidean, new phenomena come into
play. We showed by direct calculation that the existence of a
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cosmological redshift and of CMBR is an immediate consequence of the
hyperbolicity of static Lobachevskian space, and we calculated the size
of the spatial domain beyond which Euclidean physics becomes invalid.
In the case of astronomy and astrophysics, almost all our information
about the universe is related, directly or indirectly, to the intensity
of electromagnetic radiation received, and all of our photometric
techniques are at the very base of astrophysics and astronomy.

We already showed [2] that the energy of a photon decreases
as it travels through the Lobachevskian space. Naturally,
it would be entirely unacceptable if Lobachevskian geometry would
change the energy of the photon, but it would not affect the energy
of an electromagnetic wave treated in a classic way. It should be
expected therefore that we will be able to explain, in a coherent way,
how the hyperbolicity of space will affect the polarization and intensity
of light treated as a classic electromagnetic wave. We will show that
both parameters, intensity and polarization, are indeed affected
by Lobachevskian geometry. Below we will give precise equations
which govern intensity of electromagnetic radiation in Lobachevskian
spaces. Polarization, however, will be discussed in great detail in a
separate paper. Occasionally in the text we will use the term “light”
but it is obvious that our analysis applies to the whole spectrum of
electromagnetic radiation and it is not restricted to any particular
spectral range.

2. INTENSITY OF LIGHT IN LOBACHEVSKIAN
SPACES. EQUATION OF HOROSPHERE

To deal with the intensity of an electromagnetic wave (intensity of
light) in a geometric way, we need to have some geometrical model
which describes intensity, and we note that such a model already exists.
Intensity (and polarization) of light can be described in terms of so
called Stokes parameters s0, s1, s2, s3, which in turn are derived from
the density matrix [6, 11]. In that setting s0 component is equal to
the total intensity I0, while the tip of the vector s (s1, s2, s3) points to
the specific polarization state on the Poincare sphere. In homogeneous
coordinates, normalization condition [s, s] = s2

0 − s2
1 − s2

2 − s2
3 = 0

[4] tells us that Stokes vector s0, s1, s2, s3(s0 > 0) lies on the
(forward) cone. We have therefore a natural identification of Stokes
parameters with homogeneous coordinates in Lobachevskian 3D
space

We consider a generic model of Lobachevskian negatively curved
space as an interior of 3D ball in Euclidean space E3. In that way
we can deal both with the Lobachevskian velocity space and/or the
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Lobachevskian configuration space. In the first case, if we need to be
more specific, we set to c to 1, and in the second case we set R to
1. Therefore, the normalized distances will be υ

c , and r
R ,respectively,

(in velocity space signed distance between two points means relative
uniform velocity). We introduce homogeneous Weierstrass coordinates
[3], σ0, σ1, σ2,σ3, normalized by [σ, σ] = 1, σ0 > 0. The explicit
expression for the Weierstrass coordinates are:

σ0 =
1√

1 − ξ2
, σ1 =

ξ1√
1 − ξ2

, σ2 =
ξ2√

1 − ξ2
, σ3 =

ξ3√
1 − ξ2

and, ξ =
r

R
(1)

if we consider representation of Lobachevskian geometry by configura-
tion space (Lobachevskian universe), or ξ = υ

c if we consider represen-
tation of Lobachevskian geometry by velocity space [2].

As in [2], we write the equation of horosphere, [σ, s] = const.,
[s, s] = 0, [σ, σ] = 1, σ0 > 0, s0 > 0 which relates two vectors, one
in Lobachevskian space with one at the boundary at infinity, via the
horospheres equation [s, ξ]T = [s, ξ]D. Subscripts T and D refer to
homogeneous coordinates in Lobachevskian space of the transmitter
and receiver, respectively. Doing the same mathematics as in [2],
we will come to the same functional relation, but this time between
the intensity of light and distance in Lobachevskian negatively curved
space, either static or kinematic.

ξ = tanh(ln ι) (2)

here ι = s0T
s0D

= |sT |
|sD| = IT

ID
= 1 + p, in configuration static space, and in

velocity space: ι = s0T
s0D

= |sT |
|sD| = IT

ID
= p + 1 > 0, dimmer light for the

recession case, or ι = ID
IT

= s0D
s0T

= |sD|
|sT | = p + 1 > 0 brighter light for

approach case.
For ξ = υ

c ,we see that the intensity of the detected light will be
lower when the transmitter moves outward, and it will be higher when
transmitter moves toward the receiver. In other words, approaching
sources will look brighter and receding sources will look fainter. For
ξ = υ

c equation (2), gives the change in recorded intensity versus
relative velocity normalized to the curvature radius of velocity space
c. On top of that, there will also be a change in frequency (Doppler
shift), so approaching sources will look brighter and bluish,
while receding ones will appear fainter and reddish.

For ξ = r
R , the same decreasing brightness effect

(Figure 1), of distant sources will be observed in a static
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Figure 1. ID =
√

1−ρ
1+ρ . Unit ball model of Lobachevskian spaces —

either velocity or configuration. Intensity of light at detector versus
distance traveled. Intensity at transmitter is normalized to unity
(vertical axis). The curve describes a static geometry (Lobachevskian
universe) or recession case (Lobachevskian velocity space). Approach

case will result in a curve: ID =
√

1+ρ
1−ρ , ρ = υ. This effect is not

present in Euclidean space due to zero curvature of Euclidean
space. For changes in polarization we have the same plot.

Universe with Lobachevskian geometry, where the source and
the detector are at a fixed separation (relatively motionless).
As we mentioned in [2], there will also be a redshift due to static
Lobachevskian geometry. So a distant (motionless) source
embedded in a Lobachevskian space will appear reddish and
fainter than it would appear in Euclidean space.

We see that by photometric recording techniques alone it is
impossible to discriminate between distance and velocity of a radiating
object in a Lobachevskian vacuum. The same ambiguity applies to
recorded redshifts [2].

In a Lobachevskian universe, the apparent intensity of
a source and/or its measured redshift cannot be uniquely
decomposed into a distance related component and a
velocity related component by photometric and/or spectral
measurement alone.

This poses a major difficulty in correlating distances with
photometric and spectral measurements since both are affected by
negative curvature of both spaces: velocity and configuration.
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Figure 2. dID
dρ = − 1√

1−ρ2(1+ρ)
. Unit ball model of Lobachevskian

spaces — either velocity or configuration. Rate of intensity (or
polarization ) change versus radial distance. Distance is either distance
in configuration space (Lobachevskian universe) or in Lobachevskian
velocity space (relative velocity). The case pictured is of a static space,
or of the case of recession, and corresponds to rate of loss. For case of
approach (gain), the curve is: dID

dρ = + 1√
1−ρ2(1−ρ)

(normalized radial

coordinate).

3. SOLUTION OF OLBERS PARADOX — NIGHT SKY
DARKNESS EXPLAINED

Olbers paradox is a result of applying Euclidean geometry to the space
around us in an effort to deal with the clearly visible darkness of the
surrounding space. We need to say up front that there is no Olbers
Paradox in a Lobachevskian universe and in fact the darkness
of the night sky is yet another proof of hyperbolicity and the
active nature of Lobachevskian vacuum.

It was shown (equation (2)) that a Lobachevskian universe acts
as an attenuator of EM radiation. From the graph of the Fig. 1, it
is easy to see that intensity of electromagnetic radiation in any
spectral range coming to us e.g., from a point at distance ρ = 0.6
is reduced roughly by a half. This effect is purely due to the
hyperbolicity of the space, and is not present in Euclidean
space. Now we calculate the ratio of intensities at the detector in
Lobachevskian versus Euclidean spaces. This ratio will be equal
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Figure 3. IL = IE

√
1 − ρ2(1 − ρ). Lobachevskian geometry

at work. The ratio of intensities IL
IE

of electromagnetic radiation
in Lobachevskian universe versus Euclidean universe,plotted against
normalized radial distance. At radial distances (horizontal axis) close
to zero intensities are comparable, but e.g., from the shell at ρ = 0.8,
we receive only 12% of that intensity what we would be exposed to in
Euclidean space.

to the non-Euclidean attenuation factor as in Figure 1, times the
ratio of surface areas of Euclidean to Lobachevskian spheres.
If we take the unit ball model, then from a geometrical consideration
[4], the sought ratio is 1−ρ2, and the intensity ratio is

√
1 − ρ2 (1 − ρ) ,

0 ≤ ρ < 1. At this point one can argue, why not simply use a formula
for a hyperbolic sphere instead of an Eulidean sphere to obtain the
hyperbolic analog of (4πr2)−1 law. The answer is that, this would
be the case if the centers of Euclidean and Lobachevskian spheres
coincided. A Lobachevskian sphere is also an Euclidean sphere
but their centers do not coincide [4].

The plot of this function is given on Figure 3. Please note that
close to zero (at distances small with respect to characteristic length),
shown in Figure 4, intensities are practically equal, which reflects the
fact that Lobachevskian space “in small domains” produces “the same”
physics as the one in Euclidean space. In [2] we showed that a “small
domain” means a domain in order of 10E-6 (in a normalized ball of
radius 1), which is roughly of the size of our own galaxy. So within
our own galaxy (Figure 4), photometry will be based on Euclidean
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Figure 4. The same plot as in Figure 3, but normalized radial distance
is now 0.01. This means, assuming that the radius of the Poincare ball
is 15 billion light years, 0.01 corresponds to 150 million light years. This
is 1500 times diameter of our own galaxy. It is clear that photometric
measurements within such a domain will coincide with Euclidean law
of 1

4πρ2 . This is not the case for deep space.

physics, but for so called deep space astronomy we need to apply
different calculations based on Lobachevskian physics.

From the formula and from Figure 3 it is clearly seen that almost
no light will reach us if the distance is big enough, and no light will
reach us from the boundary at infinity. That is why the sky
is dark at night. It is amazing how Lobachevskian geometry
of the Universe made life on the Earth possible. Since the
Earth is not by any reason positioned in some privileged place in the
universe, it follows that in Euclidean universe, infinite brightness of
sky will exist at every point. This implies (due to Olbers scenario in
Euclidean space) that were the universe Euclidean, everything would
be turned into a hot plasma state, or perhaps into pure radiation.

We already showed [2] how Lobachevskian space produce cosmo-
logical redshifts and how CMBR is identified with the homogeneous
space of horospheres in Lobachevskian universe. The darkness of
the night sky is yet another proof of hyperbolicity of the
vacuum.
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4. APPLICATION TO ASTROPHYSICS. FAINT SOURCE
COUNT PROBLEM

Suppose we investigate some very distant objects in the Universe.
To be more precise we consider an inner shell (“boundary layer”)
near the surface at infinity in the unit ball model of Lobachevskian
Universe. As we showed, due to Lobachevskian geometry itself, light
coming to us will be redshifted and dimmer. Now, if those far
objects have some random distribution of velocities we can assume
that number of those objects with velocities toward us i.e., blueshifted,
and a number of those objects having velocities away of us, i.e.,
redshifted, roughly speaking, are equal. It may happen that those
redshifted and dimmer ones will fall behind the information
horizon (information horizon, among the other things, depends on
our ability to detect and to process information in a meaningful way)
and will disappear from detection. On the other hand, those
kinematically blueshifted and kinematically brightened will
reappear from the information horizon and that will change for
us the balance from red to blue, in favor of blue. If we adopt
that 10% of galaxies migrate in and out of information horizon, then
the ratio of blue to red will shifts will change from 50 : 50 to 55 : 45
(1.2), and there will be more faint blue galaxies. The volume of the
inner shell can be calculated due to Lobachevskian geometry, and from
the count of faint blue galaxies, we can estimate the total number of
galaxies in the internal spherical shell near “the edge” of the Universe.
Since Lobachevskian space is a homogeneous space, this may allow us
to estimate the number of galaxies within the ball of radius R, where R
is the radius of Poincare ball model of Lobachevskian space. We need
to add that the physical unit ball model (due to the existence of a
random velocity field of radiating objects) will appear to us as having
no sharply defined boundary at infinity, but rather some kind of diffuse
transition shell. In that “twilight zone”, only those objects which have
favorable intensity shifts and redshift/blueshift combinations due to
both static and kinematic shifts will be detected. We will see objects
which are not there; these will be “ghosts” coming to us from over
the horizon.

To classify shifts resulting from the configuration space and from
the velocity space as well (which are both Lobachevskian spaces
of a different curvature), we call those shifts static and kinematic
respectively, and note that while kinematic shifts can be blue-bright
or red-faint, static ones are always red-faint. This creates several
possibilities and to a high degree obscures reality. For example, based
on photometric measurements, a distant galaxy approaching us will
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look closer than it really is, while one receding from us will appear
even further from us.

It follows that there is an information horizon in Lobachevskian
space. Light traveling through the Lobachevskian space will
be frequency redshifted [2], and its intensity will diminish.
Light will become fainter and reddish and at some point will become
undetectable. In a quantum treatment of light, intensity is related to
number of photons and the frequency to the photon energy. It follows
(in a quantum framework), that a photon moving through (empty)
Lobachevskian space loses its energy, and that the number
of photons in a flow is not conserved. This leads to an absolute
information horizon. We would like to emphasize here again that the
above effects are solely due to the hyperbolicity of an empty
3 dimensional Lobachevskian space and not due to any other
factor(s).

5. OBJECT ROTATION IN LOBACHEVSKIAN SPACES

To make the total picture even more complicated we make a simple
observation that the whole curved Lobachevskian space can be
reconstructed from e.g., Euclidean cubes (cells) of about 15KLy or
so in size. In [2] we showed that, if the radius of Lobachevskian space
assumed as an interior of a 3D ball in Euclidean space, such a cell can be
regarded as Euclidean space since we can’t detect any deviation from
flatness in such a domain. We can “wrap” the 3D Lobachevskian
negatively curved universe in 3D Euclidean cells of the above size,
but each Euclidean cell will be “slightly rotated” with respect to the
previous one. It is an obvious fact that the further the cell is from
the reference point, the more it will be rotated (this can be calculated
by standard methods of differential geometry). For a Lobachevskian
velocity space such rotation effect was described by Terrel
[12]. It follows that in an extreme case of a large static distance
and high recession velocity, the remote cell containing e.g., a galaxy,
might be rotated almost 180 degrees. Hence, in that case we
will see galaxy from its rear. On the other hand for velocity
in the opposite direction, the velocity space rotation will cancel the
configuration space rotation and we will see an object more “am face”.
There will be an endless combination of cases in between. It seems
therefore that separating all the effects resulting from the double
hyperbolicity (velocity and configuration spaces) and restoring the
correct picture is an extremely difficult task. One good thing about
is that being in one place, we have the possibility of seeing objects
in the Lobachevskian Universe from “different views”. Space itself
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rotates object for us. This is in a way similar with the principle of how
a Hertzsprung-Russel (HR) diagram is constructed. We can’t follow
the life of the star because of incompatibility with our own life. But we
can see stars at different ages and if we assume that stars are more or
less typical objects, we can reconstruct (“synthesize”) the life history
of a star. Thanks to Lobachevskian geometry, we can see the
universe and objects in it from the different angles, while not
moving anywhere from our observatory.

All considered effects (wavelength shift [2], intensity shift,
and object rotation) make it very difficult to decipher the
information and to restore the simple picture of our Lobachevskian
universe, and we still did not include any (local) effects caused by
gravitation.

Our results (including those in [2]) are summarized in Table 1
below:

Table 1. Topological imprints of negatively curved spaces on
electromagnetic radiation.

Lobachevskian universe

Lobachevskian velocity space

wavelength change λD > λT

λD > λT recession, or λD < λT approach

intensity change ID < IT

ID < IT recession, or ID > IT approach

object rotation 0 < ϕ r
R

< 90o

0<ϕ υ
c

<90o recession, or −90 < ϕ υ
c

< 0 approach((

( (

((

In fact what we see in Table 1 is a direct manifestation of
Anosov flows [1] on hyperbolic manifolds and clearly suggest that
Lobachevskian universe can be studied with powerful and rigorous
methods of symbolic dynamics and ergodic theory.

6. INELASTIC SCATTERING OF ELECTROMAGNETIC
WAVES ON LOCAL VARIATION OF VACUUM
CURVATURE. ELECTROMAGNETIC DETECTION OF
GRAVITATIONAL WAVES

As we understand, the problem with detection of gravitational
waves is that they are extremely weak. This is not so bad at
all. Strong gravitational waves would shake and easily destroy the
entire solar system. Another important thing is that the impedance
mismatch at the receiver is so huge that it practically prevents
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making any reliable detection in a direct way. The outcome of the
Weber/Braginsky detection scheme in the early days seems to confirm
those unfavorable conditions. The new hope for direct detection is
based on interferometric techniques [9], but it seems that difficulties
are just shifted from one area to another [8]. We will not comment on
them. Instead, we propose to circumvent the direct detection
problems and to get (indirect) evidence of existence of
gravitational waves in the following set up.

We showed that curvature (either static or kinematic) will affect
the flux and will cause changes in apparent brightness of
the object we are looking at. This can be employed for (indirect)
detection of gravitational waves (if any exist). Suppose that in the
space between transmitter and detector a gravitational wave is passing
perpendicularly (or so) to the line of sight. Then the curvature of
space due to the passage of gravitational wave will fluctuate,
say from −1 (negative vacuum) to +K (maximum curvature inflicted
by gravitational wave). We can say that a negatively curved
space plus a gravitational wave is a light intensity modulator
(frequency modulator as well). Optical communications engineers use
this concept routinely in so called acousto-optical modulators [5]. Of
course they do not use gravitational waves, but rather acoustic waves
to modulate density of a medium (index of refraction) in which light
propagates. By this analogy, we call the proposed scheme of detecting
gravitational waves Gravito-ElectroMagnetic (GEM) detection.

We conjecture that if we record a correlated periodic
variation in intensity and wavelength (frequency) of incoming
light, we can say with high confidence that we see a periodic
change of space curvature, i.e., we see a gravitational wave. If
our method will work, it would be the first reliable way to detect
existence of gravitational waves. Therefore we should look for
correlation between AM and FM of incoming light, plus correlated
variation of its polarization. Such an experiment would be easy to carry
out, and perhaps existing observational databases can be used.

It is interesting to note that the periodicity of z already
has been observed experimentally by Tifft [13] and confirmed
by Burbidge and others [3]. As it was pointed out by Burbidge [3] this
experimentally recorded and unexplained as yet phenomenon
was totally ignored by astrophysical community since it does not fit
into Big Bang cosmology; however it fits quite naturally into our
model of static Lobachevskian universe. We conjecture that evidence of
periodicity of z is an evidence of long period (perhaps as long as
1 BLy to 2 BLy) curvature waves in the Lobachevskian universe.
Those long range disturbances of Lobachevskian negative curvature
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Figure 5. Classical picture. Moving through empty Lobachevskian
space, an electromagnetic wave is lengthened [2] and attenuated. In
the quantum picture, a stream of photons with high energy, dense at
the source, will become less energetic (reddish) and sparser as photons
travel through Lobachevskian universe. In the case, a gravitational
wave is detected, the envelope of EM wave in Figure 5 will
oscillate, (change in apparent brightness due to envelope
AM), and there will be a frequency jitter wander (FM), i.e.,
will see periodicity in redshift z.

vacuum might be due to gravitational waves or perhaps due to some
kind of self oscillation of the universe as a whole (breathing modes). If
we are correct, Tifft might be the first person ever who experimentally
observed gravitational waves in the Lobachevskian universe.

7. APPLICATION TO DEEP SPACE COMMUNICATION
AND SETI PROBLEM

The electromagnetic wave is the primary and as yet, the only vehicle
for space based communication. What does this mean for SETI efforts
to establish communications in the universe? The above analysis shows
that we live under a “double lock” in the universe around us. The
first barrier is imposed by the finite speed of light. The speed of light,
even incredibly high by our everyday experience, when compared to the
vast size of the universe, is just next to nothing. The limitations due to
the finite value of c are well known. The second lock is imposed by an
absolute information horizon since hyperbolic space will “erase”
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any information if the propagation distance is long enough.
It is easy to see from the RRD equation (9) in [2] that the

bandwidth at receiver is less than the transmitter bandwidth. If the
propagation distance is long enough, to receive (at receiver
site!) one bit of information may take “forever”. On top of
diminishing receiver bandwidth, there will be non Euclidean amplitude
attenuation which further deteriorates the signal. Quite similar
behavior (but not the same) is observed for guided electromagnetic
waves in long haul transoceanic fiber optic lines. To make transmission
within acceptable bit error rate (BER) standards, we need to fight
chromatic dispersion (CD) and polarization mode dispersion (PMD)
which both spread the pulse and attenuation due to propagation
medium (fiber). Even with the best design possible, regeneration of
the signal is required before it becomes “unreadable”.

In Lobachevskian empty space an EM wave will experience all
those “unpleasant” things. Shift in spectrum, attenuation, and depo-
larization. Therefore, to make cosmic transmission BER acceptable,
many space based regenerators will be required.

All that makes (meaningful) communications with potential
communicators by means of electromagnetic waves highly unlikely,
if not totally impossibly unless we employ free space soliton
communication. This however is subject to our next paper.

8. CONCLUSIONS AND REMARKS

In this paper and [2] we presented a detailed and coherent treatment
of observations related to electromagnetic waves i.e., recorded
spectrum and intensity. Using only one concept, the concept
of a Lobachevskian static background geometry, we gave a
qualitative and quantitative analysis of:

1. Spectral shifts in Lobachevskian vacuum. Cosmological redshift
(distance/curvature/spectral shift equation) for all values of z [2].

2. Redshift periodicity (not explained by Big Bang) with application
to GW detection.

3. Intensity of light in Lobachevskian vacuum
4. Darkness of the night sky — Olbers “Paradox”
5. Faint source count problem
6. Properties (and existence) of CMBR [2]
7. Cosmological object rotation.
8. The size of the spatial domain beyond which observation based on

Euclidean physics are invalid. [2]
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Our analysis agrees with all existing experimental (based on
EM waves) observations and extends further into the territory
where either Euclidean geometry or/and the Big Bang
predictions fail.

Now we would like to recall again the difference between
Lobachevskian physics and Euclidean physics. Lets take only static
Lobachevskian space. As we have seen from above, Lobachevskian
vacuum (contrary to Euclidean vacuum) alters characteristics
(measurable parameters) of an electromagnetic field. With respect
to the frequency wavelength, it acts as a frequency/wavelength
shifter. With respect to intensity, it acts as an attenuator.
So light received from a distant fixed source in a static
Lobachevskian Universe will be reddish, fainter than in flat
space. In Euclidean spaces the wavelength will not change,
and intensity changes as

(
4πρ2

)−1.
Since we did not make any assumptions about the physical nature

of vector b in equation (3.1) in [2], we think that the same reasoning
applies to any field which propagates at speed of light in
vacuum [b, b] = 0. If that is correct then gravitational waves (“ripples
on space”) will be attenuated, depolarized and wavelength redshifted
as well. That is (partially) the reason, in our understanding, why
gravitational waves are weak. Far enough from the source of GW,
curvature of space will be solely due to the constant negative curvature
of a Lobachevskian vacuum..

The effects described above, imposed on propagating fields by
Lobachevskian geometry itself, (and perhaps other factors, e.g.,
scattering, local gravitational fields etc.) make it very difficult to
restore a correct picture from observational data. For example,we
detect reddish, faint light. How can we interpret our data now?
There are multiple possibilities (Table 1); the correct state is a
mixture of them. How will we decompose this mixture? Is
there an unique way to find a contribution of each component? It
seems that the situation outlined has a deeper resemblance to the well
known quantum mechanical picture where a mixed state can
not be uniquely decomposed into pure states [7], contrary to
an orthodox classical physics where any mixed state (superposition)
can be uniquely decomposed into its components. Therefore it
is impossible to “precisely” decode the deep space observational
spectral and amplitude data brought to us by electromagnetic waves
due to double hyperbolicity (velocity and configuration) of the
phase space of the universe.

A similar ambiguity is already well known [11] and exists in
radar signal processing with regards to range-velocity estimation. It
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is expressed via the so called radar ambiguity function. Analysis is
done in the so called information (frequency-time) plane and the range
is assumed as 1

2 ct. Please note that it doesn’t matter whether an
EM signal that we detect from somewhere is generated by an excited
atom in a star (wavelength/intensity-space processing in our
case) 10BLy away (active transmitter), or it is generated in passive
fashion i.e., reflected (frequency -time processing in the radar case)
from an aircraft 100 miles away. We refer the interested reader to
W. Schempp paper [10] on a mathematical radar signal treatment.
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